MT Buzón Calendario Académico Idioma Mandarín Idioma Inglés Idioma Francés Idioma Español Débil Visual A+ A- A
BANNER SITIO WEB ITCA (1).png
slider violencia emocional.jpg
SLIDER DH Integridad y Seguridad Personal.jpg
Slider nuevas masculinidades 1.jpg
Slider DH LP.jpg
WhatsApp Image 2024-08-02 at 12.22.27 PM.jpeg
WhatsApp Image 2024-07-05 at 5.29.28 PM.jpeg
WhatsApp Image 2024-07-17 at 4.59.17 PM.jpg
slider DERECHOS SEX INFO 1 2023.jpg
SLIDER VIOLENCIA info 4.jpg
SLIDER VIOLENCIA info 3.jpg
slider DERECHOS SEX INFO 3 2023.jpg
slider nuevas masculinidades info 4.jpg
slider episodios 3 TecNM TV.jpg
WhatsApp Image 2024-02-28 at 2.07.26 PM.jpeg
BannerparaSliderwebredesTecNM
Integridad.jpg
image
Conducta.jpg
images/banners/bolsa.jpg
SLIDERArt8fraccXVII
SLIDERviolentometroipn
previous arrow
next arrow

Noticias

U079 2024

Programa Presupuestario U079 “Expansión de la Educación Media Superior y Superior (Tipo Superior) 2024”

 EL TECNM CAMPUS CIUDAD ALTAMIRANO, RESULTÓ FAVORECIDO EN LA CONVOCATORIA DEL PROGRAMA U079 PROGRAMA DE EXPANSIÓN DE LA EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR (TIPO SUPERIOR) EJERCICIO FISCAL 2024

Ingeniería en Desarrollo de Aplicaciones IDAP-2024-246
Ingeniería en Desarrollo de Aplicaciones IDAP-2024-246

NUEVA CARRERA

VII CONGRESO NACIONAL DE INVESTIGACIÓN EN CIENCIA E INNOVACIÓN DE TECNOLOGÍAS PRODUCTIVAS
VII CONGRESO NACIONAL DE INVESTIGACIÓN EN CIENCIA E INNOVACIÓN DE TECNOLOGÍAS PRODUCTIVAS

INVITACION ABIERTA

previous arrow
next arrow

Resumen del Artículo

DETECCIÓN DE ARMAS MEDIANTE VISIÓN ARTIFICIAL UTILIZANDO TÉCNICAS DE AUMENTACIÓN DE DATOS

Gilbert F Pérez-García1; Alexis de J Flores García1; Elías N Escobar-Gómez1; Jorge A Sarmiento-Torres1; María C Salgado-Gutiérrez1

Resumen

En este estudio, se presenta el desarrollo de un sistema de detección de armas basado en visión artificial, diseñado para fortalecer la seguridad en entornos críticos, como aeropuertos, escuelas y áreas públicas. La metodología propuesta se fundamenta en el procesamiento de imágenes y el aprendizaje profundo, orientado a la identificación de armas de fuego. Para este propósito, se implementa el modelo de detección de objetos YOLO, específicamente la versión 8. El proceso de entrenamiento se lleva a cabo empleando un conjunto de datos de dominio público modificado mediante técnicas de aumentación de datos. La ejecución del modelo se realiza en un ordenador de computadora logrando con esto, una detección en tiempo real. Cuando se detecta una posible arma de fuego, el sistema genera una alarma discreta e instantánea, alertando a las autoridades responsables, lo que acelera los tiempos de respuesta y simultáneamente registra el incidente. Es importante destacar que la ética y la privacidad son consideraciones prioritarias en este proyecto, asegurando que el sistema se centre exclusivamente en la identificación de armas de fuego, sin invadir la privacidad de las personas. En resumen, este proyecto representa las bases para el desarrollo de sistemas orientados a la aplicación responsable de la inteligencia artificial para reforzar la seguridad pública, proporcionando una capa adicional de protección respaldada por precisión, rapidez y consideraciones éticas.

  Palabras claves

Detección de armas, YOLOv8, visión artificial, Aprendizaje profundo, redes neuronales convolucionales.

Fecha de Recepción: 03/12/2023ǀ Fecha de Aceptación: 11/12/2023                        

EXTENSO;

  xx DETECCIÓN DE ARMAS MEDIANTE VISIÓN ARTIFICIAL UTILIZANDO TÉCNICAS DE AUMENTACIÓN DE DATOS

 

 

Síguenos

estrategias_de_austeridad_2020.png
Shadow

Sitios de Interés

CONACYT
CONRICYT
INAI
PNT
Dir_Posgrado